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Directed motion in a periodic potential of a quantum system coupled to a heat bath
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A system-reservoir nonlinear coupling model is proposed for a quantum system when the associated bath is
not in thermal equilibrium but is modulated by an external colored noise, to present a microscopic approach to
quantum state-dependent diffusion and multiplicative noise in terms of a quantum Langevin description.
Consequently, the Fokker-Planck equation in position space, valid in the overdamped limit, for multiplicative
colored noise is constructed to explore the possibility of observing a quantum current and dependence of the
current on various parameters of external noise is examined.
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I. INTRODUCTION

Thermal diffusion is an actively pursued area of research.
In a periodic potential it has an important role when studying
Josephson’s junctions [1], oscillators with noisy limit cycles
[2], diffusion in crystal surfaces [3], and many others. In
contemporary research it has been followed with a lot of
interest while studying the transport properties of Brownian
particles moving in a periodic potential [4] with special
stress on giant diffusion and coherent transport [5].

The motivation for all these studies partly lies in an at-
tempt to understand how protein motors move in biological
systems [6]. To understand such transport phenomena, vari-
ous models have been proposed such as the vibrational
ratchet [7], rocking ratchet [8], flashing ratchet [5], diffusion
ratchet [9,10], correlation ratchet [11], and others. These
models have large scale applications in nanoscopic systems
and biology [12] due to their effectiveness in understanding
experimental observations on biochemical motors active in
muscle contraction [13], directed transport in photovoltaic
and photoreflective materials [14], and others. The potential
in all these models is taken to be asymmetric in space. A
unidirectional current can also be obtained from a spatially
symmetric potential. In such nonequilibrium systems, time
asymmetric random forces or space-dependent diffusion is
required [15]. The space-dependent friction coefficient or
space dependent temperature may lead to the emergence of
the space-dependent diffusion coefficient [16—18]. In super-
lattice structures, semiconductors, or motion in porous me-
dia, frictional inhomogenities are common. Space-dependent
friction is experienced by particles moving close to a surface
[19,20].

In 1987, Biitikker [18] had shown that a classical particle
experiences a net drift force resulting in the generation of
current if the particle is in a symmetric sinusoidal potential
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field in the presence of sinusoidally modulated space-
dependent diffusion with the same periodicity. Biitikker had
shown this in the case of space-dependent friction in the
overdamped limit where a directional mass flow may be ob-
tained. The origin of this current is basically the phase dif-
ference between the symmetric periodic potential and space-
dependent diffusion. The current vanishes for phase
difference of zero and multiples of 7. van Kampen [21] had
come to similar conclusions in a latter work for systems in
overdamped condition with space-dependent temperature.
The problem of Langevin equation with multiplicative noise
and state-dependent dissipation for a thermodynamical
closed system has been well studied. The classical quantum-
mechanical system reservoir linear coupling model for mi-
croscopic description of additive noise and linear dissipation
which are related by the fluctuation dissipation relation
(FDR) is well known over many decades in several fields
[22,23], the nature of nonlinear coupling and its conse-
quences have been explored with renewed interest only re-
cently. For example, the nonlinear coupling approach has
been extensively used by Tanimura and co-workers [24] in
explaining elastic and inelastic relaxation mechanisms along
with their effects on vibrational and Raman spectroscopy.
Without using the rotating wave approximation for the
system-bath coupling, recently they have developed [25] a
quantum dissipative equation with Gaussian-Markovian
noise that has applicability to low-temperature systems
strongly coupled to a harmonic bath. But in all such cases,
the corresponding Langevin equation has been considered
for a thermodynamical closed system. A Langevin equation
with state-dependent dissipation and multiplicative colored
noise processes for an open system has drawn little attention
apart from a few exceptions [26,27].

In the classical regime, the transport of macroscopic ob-
jects such as Brownian particles is well elaborated in litera-
ture [28], special interest has been devoted to transport in
ratchet systems (also termed Brownian motor systems) [29].
In contrast, the quantum properties of directed transport are
only partially elaborated in such motor systems [30,31].
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effects such as tunneling and particle wave interference with
dissipation process, nonequilibrium fluctuation, and external
driving [32]. An important concept introduced recently in
classical and quantum Hamiltonian transport is that for a
spatially periodic system in which, without a biased force, a
directed current of particles can be established. Ratchet mod-
els were originally proposed as a mechanism for some kinds
of biological motors and as nanoscale devices for several
applications [29]. In these and other contexts [33], the di-
rected current is due to a spatial or temporal asymmetry com-
bined with noise and dissipation. In a classical Hamiltonian
system, dissipation is absent and noise is replaced by deter-
ministic chaos. Here, a directed current of particles in the
chaotic sea may arise under asymmetry conditions for a
mixed phase space [34]. The corresponding quantized system
may exhibit a significant ratchet behavior, even in a fully
chaotic region [35]. Such a behavior, which occurs in a vari-
ant of the kicked rotor and can be related to the underlying
classical dynamics, was observed recently in experiment us-
ing ultracold atoms [36]. Very recently, an experimental re-
alization of quantum ratchets associated with quantum reso-
nance of the kicked particle for arbitrary values of the
quasimomentum has been reported [37]. However, the theo-
retical study of the phenomena of quantum ratchets remains
wide open. In an earlier work, Landauer [38,39] explored the
problem of characterizing nonequilibrium states in the tran-
sition kinetics between two locally stable states in bistable
systems. van Kampen’s study [21] is a reevaluation of this
earlier work.

In the present work, we address the problem of quantum
Langevin equation with multiplicative noise and state-
dependent diffusion for a thermodynamically open system to
explore the nature of nonlinear coupling and modulation of
heat bath and its consequences, specifically the possibility of
observing the directed transport in a periodic potential as a
consequence of state-dependent dissipation. We consider a
system-reservoir model where the associated bath is not in
thermal equilibrium but is modulated by external colored
noise with an exponentially decaying correlation function
and the system is nonlinearly coupled with the heat bath,
thereby resulting in a nonlinear multiplicative quantum
Langevin equation with state-dependent dissipation. When
the reservoir is modulated by an external noise, it is likely
that it induces fluctuations in the polarization of the reservoir
[26]. Due to the presence of external noise, one may expect
that the nonequilibrium situation created by modulating the
bath may induce an asymmetry in the effective potential
[26,40]. A number of different situations depicting the modu-
lation of the heat bath may be physically relevant. For ex-
ample, we may consider a simple unimolecular conversion
X—7Y, say, an isomerization reaction, carried out in a photo-
chemically active solvent. The growth in living polymeriza-
tion [41] is another such example. Since the fluctuations in
the light intensity result in fluctuation in the polarization of
the solvent molecules, the effective reaction field around the
reactants gets modified.

It is pertinent here to mention the fact that obtaining the
quantum reaction rate and studying the quantum transport
phenomena in macroscopic systems is a challenging task,
and many authors resort to a classical or semiclassical ap-
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proach as a tool for studying the dynamics. However, the
Monte Carlo methods which are essential for obtaining nu-
merically exact quantum rates have thus far largely eluded
quantum dynamics. The averaging over a large number of
oscillatory terms, even with today’s computers, does not con-
verge. The impressive state of the art computations on dissi-
pative systems [42] remain limited and are not readily gen-
eralized to “realistic” systems [43]. Very recently,
formulation of a quantum Langevin equation based on
C-number approach [44] has been proposed where the au-
thors have used a coherent state representation of the noise
operator and a canonical thermal Wigner distribution of the
bath oscillators. This formalism and its different variants
[44,45] have been applied successfully to explain several as-
pects of reaction rate theory in condensed phases within the
quantum-mechanical context. Prompted by its success, we
explore in this paper a physically motivated formalism in the
context of quantum-mechanical Langevin equation with
state-dependent dissipation and multiplicative noise to study
the transport of a quantum system in a periodic and symmet-
ric potential.

The organization of the paper is as follows. Following the
recently developed methodology by Ray and co-workers
[44], starting from a microscopic Hamiltonian picture of a
quantum system nonlinearly coupled with a harmonic bath
which is modulated by an external noise, we derive the
C-number analog of the quantum Langevin equation for the
system mode in Sec. II. In Sec. III, the Fokker-Planck de-
scription of the Langevin equation with state-dependent dis-
sipation and multiplicative colored noise is provided fol-
lowed by a Smoluchowski description of the process. In Sec.
IV, as an application of our development, we derive the net
quantum current in a sinusoidal symmetric potential and the
various characteristics of the current is explored. The paper
is concluded in Sec. V.

II. MODEL AND QUANTUM LANGEVIN EQUATION

Our model consists of a particle of unit mass nonlinearly
coupled to a heat bath consisting of N-harmonic oscillators
driven by an external noise. The total Hamiltonian for such a
composite system can be written as

N ,.2

)
A=2 V@) + 3 | Bt S0l - e f@P | + Hi, (1)
j=1

where ¢ and p are the coordinate and momentum operators
of the system, respectively, V(§) is the potential energy op-
erator and {)EJ, p j} are the set of coordinate and momentum
operators for the jth bath oscillators having characteristic
frequency w;. The masses of the bath oscillators are chosen
to be unity. The system particle is nonlinearly coupled to the
bath oscillators through the general coupling term c;f(g),
where c; is the coupling constant. Hj,, is the interaction term
between the heat bath and the external classical noise (1),
with the following form:
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N
Hiy = E Kie(t). (2)
j=1

In Eq. (2), ; denotes the strength of the interaction. We
consider €(7) to be a stationary Gaussian noise process with
zero mean and arbitrary correlation function

(e(1)=0, (e()e(t’))=2Dylt-1'), 3)

where D is the external noise strength and #(¢) is the external
noise memory kernel which is assumed to be a decaying
function of its argument. The coordinate and momentum op-
erator satisfy the usual commutation relations

[¢.p]=if and [X apk]—ihfsjk- 4)

The physical situation we address here is the following. Ini-
tially (i.e., at 7=0), the system and the reservoir is in thermal
equilibrium at temperature 7. At t=0,, the external noise
agency is switched on and the bath is modulated by the ex-
ternal noise. We follow the dynamics of the system for sub-
sequent times.

We now use Eq. (1) to obtain the following dynamical
equations for the position and momentum operators:

G=p- (5)
N

P=-V@+I @D cjlls; - cf(@]. (6)
j=1

where the overdot indicates derivative with respect to time
and the prime refers to derivative with respect to §. Simi-
larly, we have the dynamical equation of motion for the bath
oscillators (j=1,2,...,N)

>

(7)

Kty
<

1l
-

pi== % - c;f ()] - K;e0], (8)

where 1 is the unit operator. To eliminate the bath degrees of
freedom from the equation of motion of the system, we first
obtain a solution for the position operator £; by formally
solving the above equations and then make use of the solu-
tion in Eq. (6) followed by an integration by parts. This
yields the generalized operator Langevin equation for the
system particle:

q=p, 9)

ﬁ=—VT®—f%®f'ﬂrﬁdfMWﬂﬂfo+fMUﬂﬂﬂ
0
+f'[¢()]m(r), (10)

where the noise operator 7(¢) and the memory kernel () are
given by
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7)) = 2 {{x (0) = ¢;14(0) ]}cos(wt)+ £{0) sm(wt)}
(11)

and

W) = Ec w? cos(wjt). (12)

In Eq. (10), m(z) is the fluctuating force generated due to
external stochastic driving e(z) and is given by

7(t)=—- Jldt'qo(t—t’)e(t'), (13)
0

where

(1) = E cjw;K; sin(w;t). (14)

The form of Eq. (10) indicates that the system is driven by
two fluctuating forces 7(r) and 7r(r) which are multiplicative
in nature due the presence of a function of system variable
f'(§). The statistical properties of 7(z) can be derived by
using suitable canonical thermal distribution of bath coordi-
nates and momentum operators at t=0. We assume that the
initial distribution is one in which the bath is equilibrated at
t=0 in the presence of the system but in the absence of
external noise agency €(7) so that

(#(1))qs =0. 15
S+ D)

= E 26 wzhw coth(fw/2kgT)cos wi(t—1"). (16)

Here, (--)os implies quantum statistical average over the
bath degrees of freedom and is defined as

Tr{A exp(= HylkyT)]
Tr{exp(- I:IB/kBT)]

<A>QS = (17)

for any bath operator A( »D;), where

N A2 1

Hg= E %L + Ew?[fj —cif(G)T | att=0

j=1
By trace we mean the usual quantum statistical average.
Equation (16) is the fluctuation-dissipation relation ex-
pressed in terms of noise operators appropriately ordered in
quantum-mechanical sense.

Following Ray er al. [44,45], to construct a C-number
quantum Langevin equation, we carry out a quantum-
mechanical average of Eq. (10), where the quantum-
mechanical average (--), is taken over the initial product
separable quantum states of the system and the bath oscilla-

apl; j=1,2,
arbltrary 1n1t1a1 state of the system and |a> corresponds to
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the initial coherent state of the jth bath oscillator. We then
obtain

(Do={Po (18)

Pro=—V'(@)o- <f’[é(t)] J dt' y(t - t’)f’[é(t’)]ﬁ(t’)>
0 0
+(f'[g(t") 9o+ {f'[4(¢") Dom(t). (19)

Since #7(z) contains operators at time =0, Eq. (19) can be
rewritten as

Pro==V'(@)o~ <f’[c?(t)]J dt' y(t - t’)f’[c}(t’)]ﬁ(t’)>
0 0
+(f'[q(t") Do) o+ {f'[q(t") D om(t). (20)

(7(1))q is now a classical-like noise term, which, in general,
is a nonzero number because of the quantum-mechanical av-
eraging and is given by

N

(H1))g=2 [Cjwf{ [(£(0))0 = c{f14(0) Dolcos(w;i)

j=1
4 20 sm(wt)H 1)
J

To realize (7(t)), as an effective C-number noise term, Ray
et al. [44,45] proposed that the momentum (5;(0)), and the
shifted coordinate ((x;(0))o—c;{(f§(0)])¢) of the bath oscil-
lators be distributed according to the canonical distribution
of Gaussian form

[(ﬁj(0)>2Q + wjz'{@j(o))Q - j(f[qA(O)]>Q}2]
Zﬁwj|:ﬁ,~(wj) + l:|
’ 2

so that for any quantum-mechanical mean value of the op-

P.=

J

exp| —

(22)

erator (A)Q which is a function of bath variables, its statisti-
cal average (-*)g is

<<A>Q>S = f [<A>Qrpjd(w12‘{<xAj(O)>Q - Cj(f(é(o)»Q})]d(ﬁj(O»Q
(23)

In Eq. (22), ;(w)) is the average thermal photon number of
the jth bath oscillator at temperature 7 and is given by

)L
;) = exp(hwkgT—1) 24)

The distribution P; given by Eq. (22) and the statistical av-
erage as defined in Eq (23) indicate that the C-number noise
(7(1))o must satisfy

{(1)g)s=0 (25)

and
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N
1
(D7) o)s= 521 cjzwjz-hwj coth(fw;/2kT)cos w;(t—1").
=

(26)

Now we must impose some conditions on the coupling co-
efficients c; and Kj, On the bath frequencies w; and on the
number N of the bath oscillators that will ensure that y(z) is
indeed dissipative. A sufficient condition for the y(r) to be
dissipative is that it be positive definite and decrease mono-
tonically w1th time. These conditions are achieved if N—
and if ¢; w and w; are sufficiently smooth functions of j [46].
As N HOO one replaces the sum by an integral over w
weighted by a density of state D(w). Thus to obtain a finite

result in the continuum limit, the coupling function c;
=c(w) and k;=k(w) are chosen as c(w)—TOT and x(w))
= Ko\ T,.. Consequently, Y(t) and ¢(¢) reduce to the follow-
ing form:

2 [
NOEE f dewD(w)cos(wr) (27)
TcJo

and
o(t) = Cokof doD(w)w sin(wt), (28)
0

where ¢, and k; are constants and — is the cutoff frequency
of the bath oscillators. 7. may be regarded as the correlation
time of the bath and D(w) is the density of modes of the heat
bath which is assumed to be Lorentzian:

2

)

(29)

With these forms of D(w), c(w), and «(w), Y(w) and ¢(w)
take the following forms:

2

wt)= % exp(-t/7,) = ; exp(—t/7,) (30)

and
o(0) = 0 exp(- 1/7,) (1)
with F:c(z). For 7.—0, Egs. (30) and (31) give ()

=2I"8(¢) and @(1)=2cokryd(t). At this juncture we consider
that the external noise €(z) is an Ornstein-Uhlenbeck process
[23] with (e(t)e(t’)):i—: exp(=|t—t'|/ 7), then from Eq. (13) it
is easy to obtain that the dressed noise 7(7) has the correla-
tion function

2

(o)) = 225

exp(=|t—1'|/7), (32)

where D is the strength of the noise €(¢) and 7 its correlation
time. On the other hand, the noise correlation function (26)
becomes
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o]

r
(O s =5~ f dotio coth(fiw/2ksT)
cv0

Xcos w(t—1")D(w). (33)

Equation (33) is an exact expression for quantum statistical
average of two time correlation functions of 7(r). We now
make the following approximation. As 7w coth(fiw/2kgT) is
a much more smooth function of w, at least for not too low
temperatures, the integral can be approximated as

r
(D) H(t"))g)s = >, o coth(fwy/2kpT)

Xfm dwcos w(t—1t")D(w), (34)
0

where w, is the average frequency of the bath. This approxi-
mation is well known and frequently used in quantum optics
for the weak coupling scheme [22]. With this approximation,
the underlying quantum noise process reduces to Markovian
noise [47]. Defining

r 1
DO = Eﬁa)o<ﬁ(a)0) + 5) N (35)
the above expression reduces to

(D) 3(t"))g)s = 2Dyt = 1') for 7.— 0, (36)

where D is given by Eq. (29). Here, it is pertinent to note
that our abovementioned assumption is not valid at very low
temperatures. In this sense, our development cannot be
claimed to be fully quantum, rather a quasiclassical one.
Nevertheless, the ansatz define by Eq. (22), which is the
canonical thermal Wigner distribution function for a shifted
harmonic oscillator [48] and always remains a positive defi-
nite function, contains the quantum information of the bath.
A special advantage of using this distribution function is that
it remains valid as a pure state nonsingular distribution func-
tion even at 7=0. Thus, from the very mode of our develop-
ment it is clear that apart from the calculation of two time
correlation functions, Eq. (36), the rest of our treatment is
truly quantum mechanical.

Writing g=(§)o and p=(p), for brevity, we can now re-
write Egs. (18) and (20) as

q=p, (37)

p== V' (@)o =TS @ o+ (@)l n(t) + m(1)],
(38)

where 7(t)=(7(1)), and is a classical-like noise term. In
writing Eq. (38) we have made use of the fact that the cor-
relation time of the reservoir is very short, i.e., 7.—0.

We now define an effective noise &(f)=%(t)+m(z). The
effective noise &(r) will have an intensity Dy and correlation
time 7 given by

Dg= f (&(1)£(0))dt,
0
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L
TR= D_Rfo (&(n)£0))dt, (39)

where the averaging is taken over each realization of 7(r)

and 7(7) independently. Following the above definitions we

obtain

I'Dk} Dkt
Or=——0—_ (40)

D R DO +D Ky

Dp=T(Dy+Dk}) and 7z =

In terms of the effective noise &(r), Egs. (37) and (38) be-
come
qg=p,
p==V(@)o-TAf @D+ (@)r), (41)

where &(7) is a C-number Gaussian Ornstein-Uhlenbeck—type
noise [23] so that

(&) =0,
Dy
(EN&1")y=— exp(=|t=1'|/7g), (42)
TR

where Dy and 73 are given by Eq. (40).
We now add V'(q), T'[f'(¢))?p, and f'(¢)&(t) on both
sides of Eq. (41) and rearrange it to obtain
q=r;

p==V'(q)+Qy-TIf (@ p+ 0 +f (&) + 0y,

(43)
where
Qv=V"(q) =(V'()o-
01 =T1f (@ p~{f' @Fpo.
0, =0 (@) -1 (@] (44)

Referring to the quantum nature of the system in the Heisen-
berg picture, we now write the system operator ¢ and p as

dg=q+4q,

p=p+dp. (45)

where ¢(=(g)o) and p(=(p),) are the quantum-mechanical
mean values and &6 and &p are the operators signifying
quantum fluctuations around the respective mean value. By
construction, (84),=(Jp)o=0 and they also follow the usual
commutation relation [ 8p, 5p]=ih. Using Eq. (45) in V'(§),
[f'(@)1?p, and in f'(§), a Taylor series expansion in &g
around ¢, Qy, Q; and Q, can be obtained as

Ov=-3 ~VI(g)a,. (46)

n=2 't-

(oF =—F[pr'(@)Qf+PQ3+2f/(6?)Q4+Q5], (47)
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0,=E&1)0y, (48)

where

1
0= 2 — "' (984"

n=2 -

0= 3 3 — g gl g,

|
m=2 n=2 M:

1
0,= 2 ;ﬂ”(qx&}"csmg,

n=2 1t-

11
Os= > X ;;f’””(q)f"“(q)<5q”’”56?"5ﬁ>g- (49)

m=2 n=2 :

From the above expression it is evident that Qy represents
quantum correction due to the nonlinearity of the system
potential, @, and Q, reflect the quantum corrections due to
nonlinearity of the system bath coupling function. Using
Egs. (46)—(48), we get the dynamical equations for the sys-
tem variable from Eq. (43) as

q=p,

p==V'(q9)+0y-TIf" (@) p-2Tpf (9)0;-Tp0O;
=2Ipf' (@) Q4 =T 05+ [ (q) (1) + QE(1). (50)

It is well documented in the literature [49] that when the
fluctuation is state dependent or equivalently when the noise
is multiplicative with respect to the system variable, which is
a manifestation of the nonlinear nature of the system-bath
coupling function, the conventional adiabatic elimination of
the fast variable in the overdamped limit does not provide
correct results. To obtain a correct equilibrium distribution,
Sancho et al. [50] had proposed an alternative approach in
the case of multiplicative noise system. By carrying out a
systematic expansion of the relevant variables in powers of
! and neglecting terms smaller than O(I'™!), they obtained
the dynamical equation of motion for position coordinate.
We follow the same procedure in our context. In this limit,
the transient correction terms Q4 and Qs do not affect the
dynamics of the position which varies in a much more
slower time scale in the overdamped limit [44]. So the equa-
tions governing the dynamics of the system variables are

qg=p;
p=-V'(q)+Qv-Th(g)p +g(q) &), (51)
where
hq) =[f" (@) p +2f () Qp+ Q3. (52)
gl@)=f"(q)+ Q. (53)

The function g(g) arises due to nonlinearity of the system-
bath coupling function f(g), where Q/ is the quantum correc-
tion to the classical contribution f’(g). For a linear coupling
function g(g) reduces to a constant.
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We can now easily identify Eq. (51) as the C-number
analog of the quantum Langevin equation, where I'h(g) is
the state-dependent damping and &(7), the effective noise
which arises due to mutual effect of system bath interaction
and bath modulation. The statistical properties of &(r) were
given earlier [see Egs. (39) and (40)].

III. THE FOKKER-PLANCK DESCRIPTION

To obtain the Fokker-Planck equation corresponding to
Eq. (51) we rewrite it as

iy = Gyluy,uy, ;1)1

iy = Goluy,uy, t: &(1)], (54)

where we have used the following abbreviation u;=¢, u,
=p and G,=p, G,=-U'(q)-Th(q)p+g(q)&(r) with U’'(q)
=V'-Qy.

The vector u with components u; and u, thus represents a
point in a two-dimensional “phase space” and Eq. (54) de-
termines the velocity at each point in this phase space. The
conservation of the points now asserts the following linear
equation of motion for density p(u,7) in phase space:

2
J J
Ep(u’t) == 2 _Gn[ulsu2st;§(t)]

n=1 aun
or, more Compactly,

p(u,t)
——=-V-Gp. 55
P p (55)

Our next task is to find out a differential equation whose
average solution is given by {p) where the stochastic average
has to be performed over two noise processes 7(t) and &(z).
V-G can be partitioned into two parts: a constant part V-G,
and a fluctuating part V-G, (¢), containing these noises. Thus,
we write

V- Gluy,uy, 79(1), ()] =V - Go(uy,u,)
+aV - Gluy,u,,t;7(1),€(1)],
(56)

where « is a parameter externally introduced to keep track of
the order of the perturbation expansion (we put a=1 at the
end of the calculation). Equation (55) thus takes the form

p(ul’MZ»t):(A0+aAl)p(ul’u2’t)y (57)

where A)=—V-G,and A;=-V-G,. The symbol V is used for
the operator that differentiates everything that comes after it
with respect to u. Making use of Novikov’s theorem [51] and
van Kampen’s lemma [52], we then derive the average equa-
tion for p [{p)=P(u,,u,,t)], the probability density of u()]
as
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dP(u,t)
ot

= {Ao‘*' CVZJ d(A (t)exp(TAp)A,(t - 7))
0

Xexp(— TAO)}P(M,I). (58)

The above result is based on second order cumulant expan-
sion and is valid for the rapid fluctuations with small strength
where the correlation time 7 is short but finite; i.e.,

A DA, (')y=0 for|t—1'|> T
Equation (58) is exact in the limit 7— 0. Using the expansion
for Ay and A; we obtain
ﬁP(u t)

P {v G0+af A=V - G, (1)

Xexp(-=7V -Gy) V - G,(t— 7))
X exp(7V - Gy) [ P(u,1). (59)

The operator exp(—7V -Gy) in the above equation provides
the solution of the equation

Ap(u,1)

PR V- Gop(u,t). (60)

Here p signifies the unperturbed part of p, which can be
found explicitly in terms of characteristic curves. The equa-
tion

i =Go(u) (61)
for fixed ¢ determines a mapping from u(7=0) to u(7), i.e.,

u— u" with the inverse (#”)""=u. The solution of Eq. (60) is
given by

i)
d(u)

=exp(=1V - Gy)p(u,0),

p(u,t) = p(u™,0) ‘
(62)

where | o) | is a Jacobian determinant. The effect of
exp(-tV - GO) on ¢(u) is given by

)|
d(u)

The above simplification when incorporated in Eq. (59)
yields

P *
—=V-{—Go+a2J dr
at 0

%‘ }P(u,t), (64)

(63)

exp(—=1V - Gop(u,0) = p(u™ 0)‘

du™)
d(u)

‘ (G(u,n)V_

-G(u™"t - 1)

where V. denotes differentiation with respect to (u_,). We

put =1 for the rest of the treatment. We now identify
uy=4g, uU=p,

Gy=p, G;=0,
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Gop=-U'(q)-Th(q)p,

Gi,=g(q)&(1). (65)
In this notation, Eq. (64) reduces to
dP(q,p,1) J J .
— —=-—(pP)+ {U'(q) +Th(q)p}P
ot dq op

+&i f d7<[g(q)§(t)]{ &_T{g(‘ff)
P Jo Pp

X &(t— 7')}}>P, (66)

where we have used the fact that the Jacobian obeys the
equation

d ‘ d(q'

dr | d(q.p)

so that the Jacobian becomes exp[—I'7(¢)t]. As a next ap-
proximation we consider the “unperturbed” part of Eq. (54)

and take the variation of p during 7 into account to first order
in 7. Thus we have

r?p
&q dp

[ I'h(q) + U'(q)]=-Th(q)

qg"=q-1mp,

p T=p+Th(q)mp+1U'(q). (67)

Neglecting terms O(7%), Eq. (67) can be simplified after
some algebra to the following form:

dP(q,p,1) ) , , JaP
ELBE 2 i [Thigip+ U (q) - 28(@)g ()]
ot dq ap
&P PP
+A—+B——+Th(g)P, (68)
ap aqdp
where

Alg) = g* (@)L, - Th(q)g*(g).,

B=g%q)J,.

Ie=f (€&t - 7)dr,
0

- f X&)t - D)dr.
0

From Eq. (39) we have I,=Dy and J,=7,Dg. Thus, Eq. (68)
can be written as

dP(q,p,1) oP , , oP
———=—p—+[Th(g)p+U'(q) - 2g(q)g'(q) yDg]—
ot dq dp

&
+[22(@) 7~ Th(@)g*(q) TRD,];Q’

PP
+ 82(6]) TRDR@ +Th(q)P. (69)
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In our above analysis, 7(¢) and e(z) are assumed to be uncor-
related as they have different origin. Also, it should be noted
that the above Fokker-Planck equation is valid for small but
finite correlation time. The fourth term in Eq. (69) is a non-
Markovian contribution for finite correlation time of external
noise. For small 7, we may neglect this term to get the ap-
proximate Fokker-Planck equation in “phase space” as

IP(q.p,t) _ dpP)
==

L + %[rh(q)p +U'(Q)

—2g(q)g'(q) TrDg]P
5 5 PP
+[g*(q) v —Th(g)g (q)TRDR]E- (70)

In terms of an auxiliary function G(g) and a stationary
Gaussian S-correlated fluctuating force B(r), the above
Fokker-Planck equation, Eq. (70) can be equivalently de-
scribed by the Langevin equation [53]

q=p,

p=-U'(q)-Th(q)p + G(q)B(1), (71)

where G(q)=g(g)V[1-T"h(q) 7] and the statistical properties
of the auxiliary noise are given by

(B(1)=0,
(B0)B(t")) =2Dgd(t - 1'). (72)

The method of Sancho and co-workers [50] is followed fur-
ther to obtain the ordinary Stratonovich description [54] of
the overdamped Langevin equation in the medium where
friction is state dependent as

B V'(q) - Qy B
I'h(q)

G(9)G'(q)
* TTh(g)P
The corresponding Fokker-Planck-Smoluchowski equation

for the probability density P(q,?) of a particle to be at ¢ at a
time ¢ is

G(g)
T'h(q)

B@). (73)

dP(q,t) 3| V'(g)-Qy
at _ﬂq{ Th(q) }P(q’t)
9| G@)G'(q)
DRﬁq[ Th(g)? }P(q’t)

G(g) J Glg)
%3 [ Ih(q) 3q rh<q>] @s 9

which can be written in a more compact form as

9 G*(q)
F dq h(q)

dP(q) 9 1
o dgTh(q)

]P(q,t)
(75)

[V’(Q) Oy+

Equation (75) is the required Smoluchowski equation corre-
sponding to the quantum Langevin equation where the noise
is multiplicative and the dissipation is state dependent and
where the system-reservoir combination is not thermody-
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namically closed; rather the reservoir is extremely modulated
by an Ornstein-Uhlenbeck noise.
Under stationary condition 2, Eq. (75) reduces to

Dgd {Gz(cy
h(q)

from which we have the stationary probability distribution in
the overdamped limit as

o [ [vaso
Py(q) = NGZ() P|: . R(q) dCI] (77)

Pst(Q):| + [V, (CI) - QV]Pst(q) =0, (76)

with R(q)= DR[ i ] and N is a normalization constant. It
can be shown easﬂy that all quantum corrections Qy, etc.,
vanish in the classical regime where the quantum fluctua-
tions around their mean value is zero. When the external
noise is absent and for linear system-reservoir coupling, the
above equation (77) boils down to the conventional Boltz-
mann distribution in classical limit: Py(q)
=N exp[-V(q)/kgT]. The stationary distribution (77) is es-
sentially a generalization of Boltzmann factor for state-
dependent diffusion in a quantum open system. The space-
dependent friction arises in an inhomogeneous medium and
can be described phenomenologically in several ways. The
diffusion term for Brownian particle in inhomogeneous me-
dium may assume several forms, microscopic origin of
which do not have a common Hamiltonian. Thus, the physics
of diffusion in inhomogeneous media is somewhat model
dependent [55]. Also, the diverse forms notwithstanding, the
generalization of Boltzman factor exp[—V(q)/kzT] for state-
dependent diffusion in the steady-state assumes a common
structure

Py(q) ~ exp[- ¢(q)]

with

q \'
olg) = jv(]zz )QV q,

V(g) being the potential field. The above steady-state distri-
bution implies that the effective potential ¢(g) is nonlocal in
space. The generality in the structure of ¢(g) is such that it
may include the spatial variation of temperature, diffusion, or
drift coefficient as specific cases as considered separately by
several authors [18,21,55]. In the Langevin scheme of de-
scription, on the other hand, state-dependent diffusion has
received attention under multiplicative noises [23]. The mi-
croscopic origin of multiplicative noise within the frame-
work of standard paradigm of system-reservoir Hamiltonian
that includes a variety of model calculations is the nonlinear
coupling between the system and the bath coordinates which
leads to nonlinear dissipation. A thermodynamically consis-
tent approach in this context was put forward by Lindenberg
and co-workers [56]. An exact Fokker-Planck equation for
time- and space-dependent friction was derived by Pollak et
al. [57]. Along with these formal developments, the theories
of multiplicative noise have found wide applications in sev-
eral areas, e.g., activated processes [58], stochastic resonance
[59], laser and optics [60], signal processing [61], noise-
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induced transport [62], noise-induced transitions [63], etc.
We extend the above studies to a thermodynamically open
system in the context of directed transport phenomena in the
quantum-mechanical regime. The system is thermodynami-
cally open in the sense that the associated quantum heat bath
is modulated by an external colored noise.

IV. PERIODIC POTENTIAL AND PHASE-INDUCED
CURRENT

In the overdamped limit, i.e., for large damping, tradition-
ally one eliminates the fast variables p adiabatically [49] by
simply putting p=0. This adiabatic elimination provides the
correct equilibrium distribution only when dissipation is state
independent. But for state-dependent dissipation, we have to
resort the approach of Sancho et al. [50]. Thus, in this limit,
using Eq. (76), the stationary current can be written as

1 [DR d Gq)
Th(g) T dq h(q)
Integrating the above equation we have the expression of

stationary probability density function in terms of stationary
current as

+[V'(g) - Qv]} Py(q). (78)

Py(0)

) 2
Py & xmq){can

G*(q) h(0)

2 (¢ '
—-J—| h(g"he?"dq’ |, (79)
DrJy

where

_r V'(g)- Qv
a) = J (1~ Th(@)relg@) ™

is the effective potential. The spatial asymmetry of ¢(g)
makes the left-right flux unequal and provides a nonvanish-
ing stationary current. We now consider a symmetric peri-
odic potential with periodicity 27 V(g+2m)=V(q) and the
periodic derivative of coupling function with the same peri-
odicity f'(g+2m)=f"(q). Now, applying the periodic bound-
ary condition on Py(q), Py(q+2m7)=Py(q), we have from
Eqgs. (79)

G*(0) r

2 1 2
=l—| —57 )
h(0) PS‘(O)_JDRL_MOWJ fo h(g)e®@dg. (80)

By applying the normalization condition on stationary prob-
ability distribution given by [3"Py(g)dg=1, we get from Eq.
(79)

f” 9 X h(q)| G*0)
0 G*(q) h(0)

e
Pst(o)_‘,_f h(g)e® @ |dg=1.
DrJy
(81)

Now eliminating %Og)lPst(O) from Eq. (80) and (81) we have
the expression for stationary current as

PHYSICAL REVIEW E 78, 021123 (2008)

DR 2 /’l(q) 2
J=—5(1=-e?2™) x f ———e ¥ 9dq h(g)e®@dq
I o G9) 0

2w q -1
¢(27T]f h(‘l) —¢(q)f h(q’)e¢<‘1’>dq'dq} )
0

(82)

From the condition of periodicity of potential and different
quantum correction terms it is clear that for the periodic po-
tential and the periodic derivative of coupling function with
the same period ¢(27)=0 and, consequently, the current re-
duces to zero. Thus, one can conclude that no current will be
generated for a periodic potential and periodic derivative of
coupling with same periodicity since there is no symmetry
breaking mechanism.

At this point it is important to calculate the quantum cor-
rection terms. Following Ray et al. [48], the details of the
calculations of quantum correction terms are shown in Ap-
pendix A. Though the quantum dispersion terms (53"), can
be obtained by direct numerical simulation of the coupled
Eq. (A3) subject to appropriate boundary conditions, it is
instructive to deal with quantum correction terms in the ana-
lytical way to find out the approximate value of quantum
dispersion terms. For the overdamped limit we neglect the
Sp term from Eq. (A2) to obtain

do. 1 o
aﬁq——r[f,(q)]z[ V'(q)63-2pf" (q)f"(q) 64
+ &0)f"(q) 841+ 0(83°). (83)

With the help of Eq. (83) we then obtain the equations for
(64") ¢ in the lowest order

d
a<5612>Q ' )]2[ V'(g)(84%)o 2T pf" (9)f"(q) 84

+&0f"(9)(84%) 0] (84)

where we have neglected the terms O((8G%),). A simplified
expression for the leading order quantum correction term
<5@2)Q can be estimated by neglecting the higher-order cou-
pling terms in the square bracket in Eq. (84) and rewriting it
as

&84%) o=~ V'(q){64%) gt

2
Il ()P

On the other hand, the overdamped deterministic classical
motion gives

V'(q)
Il ()P

These together yield after integration

dg=- dt.

(6370 =AV' ()T, (85)

where
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and ¢° is a quantum-mechanical mean position at which
(84%)p becomes minimum: (5(22)%:2’—;0, o, being defined
earlier.

For numerical implementation of our result, Eq. (82), we
consider a sinusoidal periodic and symmetric potential

V(g) = V[1 + cos(g + 0)], (87)

where V), is the barrier height and 6 is the phase factor which
can be controlled externally. The coupling function is chosen
as f(g)=(g+asing) so that the derivative of the coupling
function becomes f'(g)=(1+a cos g), where « is the modu-
lation parameter. Consequently, from Eq. (85), the second
order quantum correction in the over damped limit becomes
(84%yp=—A,Vgsin*(g+6), and the correction to the potential
in the leading order is given by

1 .
Qp=-— EAQVS sin®(g + 6). (88)

The quantum correction O and Q3 in the same order can be
estimated as

1
Qr=- EAané cos g sin*(q + 6),

Q5= Aqa2V§ sin’ ¢ sin’(q + 6). (89)

Further, we calculate the functions h(g) and g(g) using Eq.
(89) as

h(g) =(1+ acos g)* - Aqavg cos g sin’(g + 6)(1 + a cos q)

+ Aqazv(z) sin? g sin®(q + 6),

021123-

In the limit of A=kz=1, we set the parameters (5(2%%:%, the
minimum uncertainty value Aq=0.5, Vo=1.0, wy=1.0, a
=1.0, T=0.5, I'=1.0, k;,=0.2, and D=1.0. In Fig. 1, we plot
the variation of effective potential ¢(g) for a particular phase
difference 0.697r, from which we observe a tilt to the effec-
tive potential which makes the transition between left to right
and right to left unequal. The denominator for the effective
potential ¢(g) remains state dependent and, consequently,
¢(27) becomes, in general, nonzero. The consequence of
this is the existence of unidirectional mass motion. From the
expression of effective potential ¢(g), it is also apparent that
P (g) may even be peaked at positions which would be quite
less likely to be populated in the stationary situation, i.e.,
when I'(g) is not state dependent and external noises are
absent, because in this case, ¢(g) depends on various dy-
namical and kinematical parameters such as I'(g). The varia-
tion of current as a function of phase difference is shown in
Fig. 2 for four different values of 7 with a fixed D=1.0. In
Fig. 3, we have shown the variation of J with 6 for four
different D at a fixed value of 7. It is interesting to observe
from Figs. 2 and 3 that the current is a periodic function of
the phase difference between modulations of potential and
diffusion. The amplitude of current increases with the in-
crease in strength of the external noise D. This is due to the
fact that the effective temperature of the bath has been in-
creased from its equilibrium temperature, when the bath is
modulated by external noise [26]. This is apparent from the
expression of Dy [see Eq. (40)]. Also, one can observe from
Figs. 2 and 3 that for #=0, n7m with n=*1,=*2,..., the
current vanishes. In Fig. 4, we have plotted the variation of
current J as a function of D for four different values of
correlation time 7 of the external noise €(f) where the phase
difference is kept at #=0.69. From Fig. 4, it is clear that for

10
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nonzero 7 value, as D increases, the current J increases al-
most linearly. But for 7=0.0, i.e., for d-correlated external
noise, J is almost independent of D. Also, it is important to
observe that when the external noise is absent (i.e., D=0.0)
there exists a small nonvanishing current due to the quantum
fluctuations of the heat bath. Even when 7=0, this current
will exist in the absence of external noise due to the vacuum
fluctuation. Figure 5 illustrates the variation of current J as a
function of temperature for the phase #=0.697, D=1.0 and
for several values of the correlation time 7 of the external
noise €(r). From Fig. 5 one observes that even at T=0, the
vacuum field of the heat bath along with the external fluc-
tuation induces a finite current which reduces with increase
in 7 value [as is evident from expression of ¢(g)] for as 7
increases, slope of the effective potential decreases.

From the very mode of development of our formalism and
above discussions, it can be extracted that a state-dependent

noise and diffusion is generated in a quantum system in the
presence of nonlinear system-bath coupling and bath modu-
lation by external colored noise. In a classical system any net
directional mass motion [53] will not be created for bath
modulation by d-correlated noise. However, in quantum sys-
tems, phase-induced current will be generated due to sym-
metry breaking of effective potential even when the bath is
modulated by white noise &(r). This phase-induced current
will, however, disappear if the phase bias and modulation of
the bath by external noise are absent. We present our obser-
vations in Figs. 2 and 3 to substantiate the above discussion.
Thus, it is evident that this phase-induced phenomena and
the behavior of current on the correlation time of the external
noise is exclusively a quantum effect. This is the primary
physical significance of our present work present in this

paper.

FIG. 3. Plot of current, J as a
function of phase difference, 0 (in
units of ) for different D, where
7=0.2.
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V. CONCLUSION

We have formulated a theory for the diffusion of an open
quantum system in inhomogeneous medium. In our formal-
ism, since the associated bath is modulated by an external
colored noise with a short but finite correlation time, the
quantum system is thermodynamically open. Our approach is
based on the system-reservoir model with nonlinear system-
bath coupling. We then derive the quantum Langevin equa-
tion with multiplicative noises and a nonlinear dissipation.
Then, we obtain the C-number analog of the quantum Lange-
vin equation in the Markovian limit. Following Sancho we
then derive the quantum analog of the Smoluchowski equa-
tion for the state-dependent diffusion of a quantum open sys-
tem. The openness is due to the modulation of the associated
quantum heat bath. It is apparent that the state dependence
owes its origin to nonlinear coupling between the system and

the bath degrees of freedom. We have applied the formalism
to the problem of diffusion of a quantum particle in a peri-
odic potential, where the derivative of coupling function is
also periodic with the same periodicity. We observe that a
phase difference between these two spatially periodic modu-
lations may give rise to a directed quantum current when the
bath is modulated by an externally correlated Ornstein-
Uhlenbeck noise. We then numerically examine the behavior
of this quantum current for various parameters of external
noise. In the classical regime, the net current vanishes if we
modulate the bath by &-correlated noise. However, for a
quantum system, modulation by &-correlated noise breaks
down the symmetry of the potential and the generation of
quantum current does occur. The effect of the correlation
time and the strength of the external noise on the directed
motion is also examined and we observe that in the absence
of external noise (i.e., D=0.0), there exists a small current

-0.001

-0.002

-0.003

-0.004

-0.005

-0.006

FIG. 5. Plot of current J as a
function of temperature 7 for dif-
ferent 7 values with #=0.697 and
D=1.0.
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due to the quantum fluctuations of the heat bath. In contrast
to the classical approach, this current will exists in the ab-
sence of external noise due to the vacuum fluctuation even
when 7=0. This theory has more room for further develop-
ment and wide applications. In the presence of the external
colored multiplicative noise, we would like to study the bar-
rier crossing dynamics and also examine the quantum current
in various ratchet potentials in the near future.
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APPENDIX: QUANTUM CORRECTION TERMS

Here, we address the calculation of the required quantum
corrections. The following is a succinct recapitulation of the
essential issues pertaining to the same without a detailed
derivation. The detailed discussions of the quantum correc-
tions are presented at length in Ref. [44]. In the Heisenberg
picture, one can write the system operators ¢ and p as g=¢q
+6¢ and p=p+ p, respectively. 6§ and Jp describe the
quantum fluctuations around their respective mean values.

With the help of the operator Langevin equations (8) in
the Markovian limit, the time evolution of these correction
terms can be calculated via the following equations using
quantum-mechanical average over the initial product sepa-
rable coherent bath states:

q;\:ﬁ?
p==V'@Q) -TIf' @QFp+f (@n)+f(§m(t), (Al)
5 =6p,
H=-V'(g)dG- 2 v"“(q)[aq —(84")0]
n>2

- 7l2f (@)f"(a)59 +2f"(9) 2 —f"”(q)[5”' =(83")]

n=2 1

+> > ——f'"“(q) )65 85" - (84" 85"] |p

m=1n=11M

- 7[[f’(q)]25p +2f'(q) 2 —f"+1 (q)[ 85" 5p

n=1"1

(83"l + 2 2 ——f’"“ Qf (g 6g" 85" 5p

m=1n=1M
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n=2 1

- <6@m5a"aﬁ>g]] + 79(1) lf’(q)éé + > —ﬂ“(q)

x[8q" - <56}”>Q]} : (A2)

From the work of Ray and co-workers [44], it is clear that
the operator correction equations can be used to yield an
infinite hierarchy of equations. Up to third order, we con-
struct, for example, the following set of equations which are
coupled to quantum Langevin equations. From Eq. (8),

d, . on | onan
E<5612>Q =(6qp + 5P5Q>Q,

d, o nen . .
E(f?qﬁp + PGy =—2x(q.p)(G% o + 2(54%)¢

- A (1X5G3p + 6p84) o — L(q.p)
X(8¢%) o = 2%f" (@)f " (q){6G* 5p
+ PG,

d
E<5PA2>Q == 2AF (@ 1X 8o~ x(q.p){84p + 3 54) o

1
- 5§(%P)<56?25ﬁ +3p84%)o = 271" (@)f"(q)

X(84p* + Op*8G) .

d, 3 o

qu% = 5((542517 + OpSGH o,
L 550 = = 39F (@ T 0~ 2x(q.p) (5352 + 05283
P 0= q P70~ 5X(4p qOp~+ p~64) ¢,

A, rr anen . o5
E<5qz5p + 0P84 o =—2x(q.p){8G°) o + 2{5Gp* + 5p*5G)¢

~ NS (@K 84> 5 + 35 34°),

—<5q 2+ 8p°84) o =2(8p") o — 4x(q.p){84° P + P47
= 2Af (@)1X8Gp* + 0p*5G) . (A3)
where
x(q.p) = V"(q) + 2ypf (9)f"(q) = n(1)f"(q),
{q.p) =V"(q) + 291" (@)f"(q) + 2wl (@) = n(0)f"(q).
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